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MECHANICAL ENGINEERING DEPARTMENT 
UNITED STATES NAVAL ACADEMY 

 
EM423 - INTRODUCTION TO MECHANICAL VIBRATIONS 

 
SINGLE DEGREE OF FREEDOM SYSTEMS 

PART 2: HARMONIC EXCITATION 
 
INTRODUCTION 
The previous SDOF handout concentrated on the unforced mass/spring system, both 
with and without damping.  In this handout we concentrate on a SDOF subject to 
various forms of harmonic excitation. 
 
HARMONIC FORCE EXCITATION 
When a constant amplitude harmonic force excites a linear system, the system 
responds at the same frequency as the excitation (we are ignoring any transients due to 
switching on the excitation).  We need to clarify the difference between the natural 
frequency, and the excitation frequency. 
 

 Natural Frequency (rad/s)

 Excitation Frequency (rad/s)
nω

ω

=

=
 

 
The natural frequency, ωn, is a property of the SDOF, and does not vary with excitation.  
The excitation frequency, ω depends only on the excitation, and is independent of the 
SDOF. 
 
While harmonic force excitation is not a common form met in many real situations, 
solving for it provides the key for solving many other forms of excitation.  Also, many 
standard experimental vibration test methods measure the frequency characteristics of 
a structure.  Even though the excitation for the test may not be steady state harmonic, 
the effect is the same as measuring the response due to harmonic excitation.  Therefore 
the response due to steady state excitation needs to be understood fully before other 
forms of excitation are analyzed.  The equation of motion is: 
 

( )sinOmx cx kx F tω+ + =&& &  

 
The solution to this equation is in two parts: The Complementary Function and the 
Particular Integral.  The Complementary Function represents the response of a damped 
free vibration, and was discussed in the first SDOF handout.  The Particular Integral 
represents the steady-state solution, and can be presented in a number of ways.  One 
solution has the form: 
 

( ) ( ).sinx t X tω ϕ= −  
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On this course we have already used the complex exponential form of harmonic 
notation.  For vibrations this is often the best method to use, so we now use it to solve 
the equation of motion.  The forcing function can be written as FOeiωt and the 
displacement response can be written as: 
 

( ) ( ) .i t i tx t X e X eω ϕ ω−= =  

 
where X is a complex displacement, holding both the amplitude of motion, and the 
phase of the response relative to the excitation.  Substituting the complex forms for both 
force and response into the basic equation of motion results in: 
 

( )2 . .i t i t
Om i c k X e F eω ωω ω− + + =  

 
which by rearranging and using the relationships ωn

2 = (k/m) and ζ = c/(2mωn), results in 
the equation: 
 

( )
( ){ }2 2

1

2O n n

XH i
F m i

ω
ω ω ζωω

= =
− +

 

H(iω) is called the Frequency Response Function (FRF) of the SDOF.  The FRF is a 
property of the SDOF.  Its value (per unit mass) depends solely on the excitation 
frequency, the natural frequency, and the viscous damping ratio.  The amplitude and 
phase of this complex FRF equation are: 
 

( )
( ){ }

( )

1
2 22 2 2 2 2

1

2 2

1
Magnitude

4

2
Phase tan

O

n n

n

n

XH i
F

m

ω

ω ω ζ ω ω

ζωω
ω ω

−

= = =

− +

 − =
 − 

 

 
The maximum value of the FRF is when the forcing frequency is given by: 
 

( )2Excitation Frequency for maximum FRF 1 2  rad/sr nω ω ζ= = −  

 
This frequency, ωr, is called the circular resonant frequency. 
 
The low frequency behavior of the FRF (i.e. well below resonance, with ω « ωn) is 
controlled by the stiffness. 
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( ) 2

1 1
n

n

H i
kmω ω

ω
ω

= ==  

 
The high frequency behavior with ω » ωn is controlled by the mass. 
 

( ) 2

1
n

H i
mω ω

ω
ω

=
−?  

 
When ω ≈ ωn (close to resonance) the motion is controlled by the damping.  If there 
were no damping, the FRF would be infinite at the natural frequency.  However, even a 
very small amount of damping (energy dissipation) prevents this happening. 
The behavior of these equations, and sketches of the graphs, is given in class. 
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ROTATING UNBALANCE 
One of the most common sources of vibration in engineering is rotating unbalance.  This 
is where a rotating machine is not precisely balanced, and the rotating out of balance 
mass causes forces on the engine (the idea of centripetal or centrifugal force).  We 
consider the complete engine (including the out of balance mass) to have mass M, and 
the unbalanced mass itself to be m, rotating with eccentricity e.  A real engine 
unbalance will cause vibrations in at least two planes (vertical and rocking), but for this 
discussion we limit ourselves to pure vertical motion only.  As usual, we measure the 
(vertical) displacements from the equilibrium position, so: 
 

( )
( )

Displacement of non-rotating mass, ,  

Displacment of rotating mass, ,  .sin

M m x

m x e tω

− =

= +
 

 
The FBD for the rotating mass is: 

 
Resolve forces vertically upwards 
 

( )2
 Tension sinVERTICALCOMPONENT mx me tω ω− = −&&  

 
The FBD for the non rotating mass is: 

 
Resolve forces vertically upwards 
 

( ) TensionVERTICALCOMPONENT kx cx M m x− − = −& &&  

hence 
( ) ( )

( )

2

2

sin

sin

mx me t kx cx M m x

Mx cx kx me t

ω ω

ω ω

− + − − = −

+ + =

&& & &&
&& &  

The last equation is essentially the same as for force excitation, but replacing the 
forcing function Fo with (meω

2), which is a function of frequency.  We can therefore write 
down the dynamic response of the SDOF with rotating unbalance by comparing the 
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equation of motion with the force excitation case.  The response is relative to the 
product "me". 

( ){ }
2

2 2 2n n

X
me M i

ω

ω ω ζωω
=

− +
 

 
The magnitude and phase of this complex function are: 
 

( ){ }

( )

2

1/222 2 2 2 2

1
2 2

4

2
phase tan

n n

n

n

X
me M

ω

ω ω ζ ω ω

ζωω
ω ω

−

=
− +

 
 =
 − 

 

 
 
Example.   
A counter rotating eccentric weight exciter is used to 
produce forced oscillation of a spring supported mass.  By 
varying the speed of rotation, a resonant amplitude of 
0.60 cm was recorded.  When the speed of rotation was 
increased considerably above the resonant frequency, the 
amplitude approached a fixed value of 0.08 cm.  What was 
the viscous damping ratio of the system? 
 
 
Solution. 
The assumption is that damping is light, and therefore the 
resonant frequency identified above is the same as (or very close to) the natural 
frequency of the SDOF.  The dynamic response equation for this problem is: 
 

( ){ }
2

1/222 2 2 2 24n n

X
me M

ω

ω ω ζ ω ω
=

− +
 

when nω ω≈  

1
1

1
     hence     0.06 cm

2 2

X meX
me M Mζ ζ

= = =  

when nω ω?  

2 0.08 cm
meX
M

= =  

Simultaneous solution of these two equations yields the result: 
0.08

0.0666 6.7%
2 0.60

ζ = = =
×
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SUPPORT MOTION 
A large class of problems concerns structures subject to base (support) motion.  
Examples include most vehicles (cars, airplanes, trains, .....) as they progress over 
rough surfaces.  Another class of problems includes buildings in earthquake zones.  
With base motion the excitation is a displacement, which is transmitted to the SDOF 
mass through a spring element.  The force on the mass is therefore dependent on the 
relative displacement of the support and the mass.  The FBD for the mass is: 
 

 
Resolving forces vertically gives: 

( ) ( )k y x c y x mx− + − =& & &&  

Now (x-y) is the relative motion between the mass and the ground.  If we make the 
substitution z = (x-y) we get: 

( ) ( )
( )

k y x c y x mx

kz cz m z y

mz cz kz my

− + − =

− − = +

+ + = −

& & &&
& && &&

&& & &&
 

 
We will now restrict the problem to harmonic base excitation and we obtain the 
equation: 

( )2 .sinmz cz kz m Y tω ω+ + =&& &  

 
This equation is of the same form as that for rotary unbalance.  Therefore we can solve 
it for Z directly using the previous results: 

( ){ }
2

2 2 2n n

YZ
i

ω

ω ω ζωω
=

− +
 

 
However, we do not just want to know Z, which is the relative motion between the 
support and mass.  We also need to know the absolute motion of the mass, X, which is 
given by X = Z+Y: 
 

( ){ }
2

2 2
1

2n n

X Z Y Y
i

ω

ω ω ζωω

 
 

= + = + 
− +  

 

 
Hence: 
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( )
( )

2

2 2

2

2

n n

n n

iX
Y i

ω ζωω

ω ω ζωω

+
=

− +
 

The amplitude and phase of this complex equation can be determined: 
 

( )

( )

4 2 2 2

22 2 2 2 2

3
1

2 2 2 2

4

4

2
tan

4

n n

n n

n n n

X
Y

ω ζ ω ω

ω ω ζ ω ω

ζω
ϕ

ω ω ω ζ ω ω
−

+
=

− +

 
 =
 − + 

 

 
 
VIBRATION ISOLATION 
One important aspect of vibration engineering is the design of vibration isolators.  In 
simplistic form, they are spring/damper systems used to reduce the amount of vibration 
transmitted through them.  A typical example is the suspension system in cars, where 
the "shock absorber" is a combined spring and damper unit.  At sea, most electronic 
equipment is isolated from the hull by isolators that are usually a natural rubber 
providing a spring stiffness, supported on steel flanges.  These isolators are designed to 
reduce vibration transmitted to the equipment.  Large engines and noisy equipment are 
also mounted, but this time to reduce the vibration transmitted to the hull. 
 
An incorrect selection of isolator will amplify the vibration, and make things worse.  We 
therefore need to understand the theory of isolators.  Before we can make an analysis, 
we have to determine what we mean by isolation.   
 
ISOLATION FROM GROUND MOTION. 
Generally, if the ground is moving or a vehicle is traveling 
across rough ground, and we wish to protect equipment from that 
motion, we want to reduce the ratio of transmitted displacement to 

excitation displacement.  That is, we wish to reduce the ratio 
X
Y

. 

For a vehicle traveling over rough ground approximated by a 
sine wave, the excitation and response will be: 
 

( )
( )

i t

i t

y t Ye

x t Xe

ω

ω

=

=
 

with X being complex to include phase information.  The excitation frequency, ω, can be 
determined from the wavelength of the ground roughness, L, and vehicle speed, v: 
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2
hence     2

v fL
vf

L
π

ω π

=

= =
 

 
This is an example of support motion, discussed earlier, and we can therefore use the 
results directly.  The equation for the motion of the mass relative to the ground motion is 
called the displacement transmissibility, TR, of the system.  The equation is clearly the 
same as the result for support motion. 
 

( )

( )

4 2 2 2

22 2 2 2 2

3
1

2 2 2 2

4

4

2
tan

4

n n
R

n n

n n n

XT
Y

ω ζ ω ω

ω ω ζ ω ω

ζω
ϕ

ω ω ω ζ ω ω
−

+
= =

− +

 
 =
 − + 

 

 
 
The response is in two distinct frequency ranges, separated by the frequency at which 
the displacement transmissibility is unity.  The graphical form of the response, and its 
interpretation, will be given in class. 
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The vibration (transmitted output) is only less than the input if the 
transmissibility is less than one (zero dB).  This is only the case 
when the excitation frequency is related to the natural frequency 
by ω > √2ωn.  If the excitation frequency is not in this required 
range, we might be able to modify the structure to achieve this. 
We would usually want to reduce the natural frequency, so we 
would consider reducing the stiffness, or increasing the mass, or 
a combination of the two.  Note that changing the amount of 
damping does NOT change the natural frequency. 
 
As an example, consider an automobile's accelerator pedal.  Its 
vibration can be excessive, and can cause driver discomfort.  
Toyota, for example, add a mass to the system to reduce its natural frequency well 
below the typical excitation frequencies observed in a car. 
 
ISOLATION FROM RUNNING EQUIPMENT. 
In this class of problems we have a different consideration.  Running equipment usually 
generates dynamic forces, and we want to reduce the force transmitted through the 
isolation mounts to the ground (or ship's hull, or whatever).  The isolator is typically a 
spring/damper system, comparable to the type used for isolation from ground motion.  
We have already considered the force transmitted through the spring/damper when we 
considered support motion.  This time, however, the displacement is from the mass, but 
the effect is similar.  A full analysis, not included in these notes, shows that the force 
transmissibility of the isolator (ratio of transmitted force to excitation force) is given by: 
 

( )
( )

2

2 2

2

2

n nT
R

n n

iF
T

F i

ω ζωω

ω ω ζωω

+
= =

− +
 

 
Comparison with the displacement transmissibility shows that the two forms of 
transmissibility we have considered have the same solution.  That is: 
 

( )

( )

4 2 2 2

22 2 2 2 2

3
1

2 2 2 2

4

4

2
tan

4

n n
R

n n

n n n

T
ω ζ ω ω

ω ω ζ ω ω

ζω
ϕ

ω ω ω ζ ω ω
−

+
=

− +

 
 =
 − + 

 

 
 
In other words, the force and displacement transmissibility equations are identical.  
HOWEVER, IT MUST BE REMEMBERED THAT EVEN THOUGH THE EQUATIONS ARE THE SAME, 
THEY ARE USED FOR DIFFERENT SYSTEMS. 
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ASSIGNMENTS 
1. A machine part of mass 2 kg vibrates in a viscous medium.  Determine the 
damping coefficient, c, when a harmonic exciting force of 25 N results in a resonant 
amplitude of 1.5 cm with a period of 0.20 s. 
 
2. A weight attached to a spring of stiffness 500 N/m has a viscous damping device 
attached.  When the weight is displaced and released, the period of vibration is 1.80 s, 
and the ratio of consecutive amplitudes is 4.2 to 1.0.  Determine the amplitude and 
phase when a force FO = 2.cos(3t) acts on the system. 
 
3. A spring-mass system is excited by a force FOsin (ωt).  When excited at the 
natural frequency, the amplitude is measured to be 0.6 cm.  At ω = (0.8) × ωn, the 
amplitude is measured to be 0.5 cm.  Determine the viscous damping ratio, ζ, of the 
system. 
 
4. The figure represents a simplified arrangement for a 
spring-supported vehicle traveling over a rough road.  
Determine an equation for the amplitude of motion for m as 
a function of road speed.  What is the worst road speed? 
 
 
 
 
5. A 70 kg motor is rigidly mounted on an isolator block of mass 1200 kg.  The 
natural frequency and viscous damping ratio of the combination on the isolator block's 
support system are fn = 160 cpm, and ζ = 0.10.  An 
unbalance in the motor causes a vertical harmonic 
force of f = 100 sin (30 t).  Determine: 
 
a) The amplitude of vibration of the block. 
 
b) The maximum acceleration of the block. 
 
c) The amplitude of the dynamic force transmitted to the ground through the isolator 
block's support system. 
 
6. A sensitive 100 kg instrument is to be installed at a location where the observed 
acceleration is 15 cm/s2 at 20 Hz.  It is proposed to mount the instrument on a rubber 
pad, with k = 280 kN/m and ζ = 0.10.  What acceleration will be transmitted to the 
instrument? 
 
7. Show that for a single-degree-of-freedom system the peak response amplitude 
occurs when the force excitation frequency is given by: 
 

21 2nω ω ζ= −  
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SOLUTIONS 
1. A machine part of mass 2 kg vibrates in a viscous medium.  Determine the 
damping coefficient, c, when a harmonic exciting force of 25 N results in a resonant 
amplitude of 1.5 cm with a period of 0.20 s. 
 

( )
( ){ }1/222 2 2 2 2

1

4O
n n

XH
F m

ω
ω ω ζ ω ω

= =
− +

 

Assume light damping for now, so at resonance, nω ω≈  

2

2

1
2

so          but also     
22

RES

O n

O

nRES n

X
F m

F c
mX m

ζω

ζ ζ
ωω

=

= =

 

Combine and rearrange: 

2
but     2

0.2 25 0.2
hence     53.1 Ns/m

2 0.015 2

O

RES n

n n
n

O

RES

Fc
X

f

Fc
X

ω
π

ω π
τ

π π

=

= =

×
= = =

×

 

Check the “light damping” assumption: 
53.1 0.2

0.423 42.3%
2 2 2

ζ
π

×
= = =

× ×
 

which is not “light”. So the answer will have some error. It is left to the student to show 

that in this specific case, using a resonant frequency of ( )21 2R nω ω ζ= − actually 

makes no difference to the final answer. 
 
2. A weight attached to a spring of stiffness 500 N/m has a viscous damping device 
attached.  When the weight is displaced and released, the period of vibration is 1.80 s, 
and the ratio of consecutive amplitudes is 4.2 to 1.0.  Determine the amplitude and 
phase when a force FO = 2.cos(3t) acts on the system. 
 
First, find the system characteristics from the free decay (log-decrement) information. 
Note that damping is not “light” for this problem. 
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2

2 2

2

4.2 2
ln 1.435

1.0 1

from which     0.2227

2
1      so     1 0.2227

1.80

3.58 rad/s     and     39 kg

N

d n n

n
n

N

km

πζ
δ

ζ

ζ
π

ω ω ζ ω

ω
ω

 = = = 
  −

=

= − = −

= = =

 

Now solve for the harmonic force excitation part of the problem: 

( )
( ){ }

( ){ }

1/222 2 2 2 2

22 2 2 2 2

1/2

2 N ;     3 rad/s

1

4

2
so     0.0084 m

39 3.58 3 4 0.2227 3.58 3

O

O
n n

F

XH
F m

X

ω

ω
ω ω ζ ω ω

= =

= =
− +

= =
− + × × ×

 

( ) ( ) ( )
1 1

2 2 2 2

2 2 0.2227 3 3.58
Phase of tan tan 51.4

3.58 3
On

n

H ζωω
ω

ω ω
− −

   × × ×   = = =
   − −   

 

 
3. A spring-mass system is excited by a force FOsin (ωt).  When excited at the 
natural frequency, the amplitude is measured to be 0.6 cm.  At ω = (0.8) × ωn, the 
amplitude is measured to be 0.5 cm.  Determine the viscous damping ratio, ζ, of the 
system. 

( )
( ){ }

( ){ }
( ) ( ) ( ){ }

2 2

1/2
2 2 2 2 2

2

1/222 2 2 2

2
22 22 2 2 2

2

1 0.006 1
At resonance       hence     

2 2

1
At 0.8      

4

0.005 1
hence     

1 0.8 4 0.8

Hence     4 0.006 0.005 1 0.8 4 0.8

from w

RES

O On n

n
O

n n

O
n

O

n

X
F Fm m

X
F m

F m

F
m

ζω ζω

ω ω
ω ω ζ ω ω

ω ζ

ζ ζ
ω

= =

= =
− +

=
− +

 
= = − + 

 
2hich     0.0405     or     0.20 20%ζ ζ= = =

 

 
4. The figure represents a simplified arrangement for a spring-supported vehicle 
traveling over a rough road.  Determine an equation for the amplitude of motion for m as 
a function of road speed.  What is the worst road speed? 
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( ) ( )
4 2 2 2 3

1
2 2 2 222 2 2 2 2

4 2
     and     tan

44

n n

n n n
n n

X
Y

ω ζ ω ω ζω
φ

ω ω ω ζ ω ωω ω ζ ω ω

−
 +  = =
 − +− +  

 

 
For this problem: 

2
     and     n

v k
L m
π

ω ω= =  

Most unfavorable speed is when: 
2

2
2

2
1 2

1 2
hence     1 2

2

WORST
R n

n
WORST n

v
L

L
v f L

π
ω ω ω ζ

ω ζ
ζ

π

= = = −

−
= = −

 

 
 
5. A 70 kg motor is rigidly mounted on an isolator block of mass 1200 kg.  The 
natural frequency and viscous damping ratio of the combination on the isolator block's 
support system are fn = 160 cpm, and ζ = 0.10.  An unbalance in the motor causes a 
vertical harmonic force of f = 100 sin (30 t).  Determine: 
 
a) The amplitude of vibration of the block. 
 
Note that even though the excitation is being caused by rotor unbalance, the way the 
question is worded makes it a force excitation problem. 
 

( )
( ){ }1/222 2 2 2 2

1

4

160 16
2  rad/s ;     30 rad/s ;     100 N

60 3

O
n n

n O

XH
F m

F

ω
ω ω ζ ω ω

ω π π ω

= =
− +

= × = = =

 

Hence 
3

1/222 2
2 2 2

100
0.126 10  m

16 16
1270 30 4 0.10 30

3 3

X
π π

−= = ×
      − + × × ×            

 

 
b) The maximum acceleration of the block. 
 

( )
( )2

2 3 2

.sin 30      with     0.126 mm

30 .sin 30

Hence     30 0.126 10 0.113 m/s

x A t A

x A t

X −

= =

= −

= × × =

&&
&&
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c) The amplitude of the dynamic force transmitted to the ground through the isolator 
block's support system. 
 
We now consider the Transmissibility of the isolation system: 
 

( )

4 2 2 2

22 2 2 2 2

4
0.40

4

Hence     100 0.40 40 N

n nT
R

n n

T

F
T

F

F

ω ζ ω ω

ω ω ζ ω ω

+
= =

− +

= × =

 

 
6. A sensitive 100 kg instrument is to be installed at a location where the observed 
acceleration is 15 cm/s2 at 20 Hz.  It is proposed to mount the instrument on a rubber 
pad, with k = 280 kN/m and ζ = 0.10.  What acceleration will be transmitted to the 
instrument? 
 

( )

3

4 2 2 2

22 2 2 2 2

2

280 10
52.92 rad/s

100
2 20 125.66 rad/s

4
0.237

4

Hence     15 0.237 3.56 cm/s

n

n n
R

n n

k
m

X XT
Y Y

X

ω

ω π

ω ζ ω ω

ω ω ζ ω ω

×
= = =

= × =

+
= = = =

− +

= × =

&&
&&

&&

 

 
7. Show that for a single-degree-of-freedom system the peak response amplitude 
occurs when the force excitation frequency is given by: 
 

21 2nω ω ζ= −  

 
This solution is presented in class. 


